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Abstract
We study the geometric phases underlying the time evolution of the
quantum wavefunction of a driven nonlinear oscillator which exhibits periodic,
quasiperiodic as well as chaotic dynamics. In the asymptotic limit, irrespective
of the classical dynamics, the geometric phases are found to increase linearly
with time. Interestingly, the fingerprints of the classical motion are present in
the bounded fluctuations that are superimposed on the monotonically growing
phases, as well as in the difference between the geometric phases of two
neighbouring quantum states.

PACS numbers: 03.65.Vf, 05.45.Mt, 05.45.Ac

1. Introduction

The geometric phase has emerged as a new concept at the forefront of physics providing a
geometric framework for understanding various fundamental problems (Shapere and Wilczek
1989). This activity began after a discovery by Berry (1984) which showed the existence
of a phase of purely geometric origin, which is acquired by an eigenfunction in an adiabatic
time evolution. This deep and elegant concept has been extended to non-adiabatic cases
(Aharonov and Anandan 1987) and also to non-cyclic circuits (Samuel and Bhandari 1988)
and hence applies to essentially any type of quantum evolution. Using a kinematic approach
(Mukunda and Simon 1993), the geometric phase has been shown to be a gauge-invariant
quantity, and is equal to the difference between the total phase and the dynamical phase
acquired by the wavefunction. The geometric phase characterizing quantum dynamics is an
important topological quantity that is resilient to certain types of errors.

In this paper, we address the question of how a quantum geometric phase responds to
the changes in the classical dynamics, in particular to the transitions from regular to chaotic
dynamics. As an illustrative example, we compute the geometric phases associated with
the time evolution of the wavefunction of a driven nonlinear oscillator that exhibits periodic,
quasiperiodic as well as chaotic dynamics. In the asymptotic limit, these phases increase
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linearly with time, irrespective of the nature of the corresponding classical dynamics. The key
result of our analysis is that the detailed information about the classical dynamics is present
in the fluctuations about this monotonic behaviour and also in the difference between the
geometric phases associated with two neighbouring quantum states.

2. Classical dynamics of the driven impact oscillator

The Hamiltonian under investigation describes an impact oscillator (Shaw and Holmes 1983,
Thompson and Stewart 1986). This is an oscillator that rebounds elastically whenever its
displacement x drops to zero, and is driven by an external time-dependent force F(t). For
x > 0, this system is described by

H = 1
2p2 + 1

2ω2
0x

2 − F(t)x, (1)

where the mass of the particle has been set to be unity. The classical dynamics of this model
has been investigated in a variety of contexts which include reflection of cosmic rays, wave
dynamics near shores and the study of various visco-elastic impacts (Thompson and Stewart
1986). Additionally, the dynamics of the impact oscillator has been related to the dual billiard
map (Boyland 1994).

The impact oscillator is a piecewise linear system, where the classical analytic solutions
xc(t) can be obtained for x > 0. The particular solution for arbitrary F can be written as

xc(t) = (ω0)
−1

∫ t

0
[F(t ′) sin ω0(t − t ′)] dt ′, (2)

to which any arbitrary solution for the unforced system with F(t) = 0 can be added. The
dynamics of this nonlinear system is studied numerically by using the analytic solution for
x(t) > 0 for very small time increments, so as to determine precisely the time and the velocity
when x reaches 0. These are then used as the new initial conditions for dynamics. In the
presence of damping, the system has been shown to exhibit generic nonlinear effects including
a period doubling route to chaos (Thompson and Stewart 1986).

We choose F(t) = f cos(ωt), with ω = 1 and f = 1. We first explore the classical phase
space by varying ω0 and the initial conditions. The system is found to possess highly complex
dynamics, typical of a nonintegrable Hamiltonian system exhibiting stochastic behaviour.
Figure 1 shows a mixed phase space portrait illustrating extreme sensitivity to initial conditions.
In this paper, we present our results for a fixed ω0 = 1.6.

3. Quantum dynamics of the impact oscillator

Our choice of the driven impact oscillator is motivated by the fact that in addition to the
simplicity underlying the classical analysis of the oscillator, the quantum wavefunctions
ψ(x, t) are explicitly known in terms of the classical solution xc(t) (Rapp 1970, Nogamin
1991):

ψ(x, t) = χ(x ′, t) exp
i

h̄

[
ẋc(t)x

′ +
∫ t

0
L(t ′) dt ′

]
. (3)

Here, x ′ = [x − xc(t)] and L is the Lagrangian of the driven system. χ(x, t) denotes the
wavefunction of the impact oscillator in the absence of driving.

If we take χ to be an eigenstate of the undriven oscillator, χn(x, t) = un(x) exp −i(Ent/h̄),
the eigenfunctions un can be written in terms of Hermite polynomials as un(x) =
exp −[ω0x

2/(2h̄)]Hn(x
√

ω0/h̄). We would like to point out that the above solution has



Spectrum of geometric phases in a driven impact oscillator 487

Figure 1. A phase portrait of the driven impact oscillator at discrete times t that are multiples of
the driving period 2π/ω: to show sensitive dependence on the initial conditions, we choose three
different initial x values, x0, with initial momentum p0 = 0. For x0 = 1.0416, there is a period-11
orbit, seen with 11 crosses in the figure. For x0 = 1, the motion is chaotic, and hence appears as
randomly scattered dots. With x0 = 1.1, the motion is quasiperiodic, leading to a smooth invariant
torus (darker dots) that surrounds the chaotic sea.

been discussed in the literature only in the context of a driven simple harmonic oscillator,
whose classical dynamics is linear. On the other hand, the dynamics of the impact
oscillator is nonlinear, since it is a simple harmonic oscillator with an additional boundary
condition such that the dynamics is confined to x > 0. Therefore, the wavefunction of the
simple harmonic oscillator that vanishes at x = 0 describes the impact oscillator. (This
is analogous to the example of a particle in a box, whose quantum wavefunction is the
free particle wavefunction that vanishes at the boundary.) This in turn implies that the
eigenfunctions of the impact oscillator are Hermite polynomials, but with n restricted to
odd integers as they vanish at x = 0 as required. However, it should be emphasized that
due to the explicit dependence on xc(t), the quantum wavefunction of the driven impact
oscillator is very different from that of the driven simple harmonic oscillator. The centre
of the wave packet, given by xc(t), will exhibit periodic, quasiperiodic as well as chaotic
dynamics.

We would like to point out that wavefunction given by equation (3) is not an eigenstate
of the Hamiltonian (1). The adiabatic wavefunction of the driven oscillator is given by
χ(x − (ω0)

−2F(t)) with eigenvalues En = (
n + 1

2

)
h̄ω0 − 1

2ω−2
0 F 2(t). It coincides with

un provided xc = ω−2
0 F(t), which is satisfied only when ẍc = 0. In fact, the quantum

wavefunction can be expanded in terms of adiabatic eigenfunctions, or in terms of the
eigenstates of the undriven oscillator for computing the transition probabilities (Rapp 1970,
Nogamin 1991).

In view of the fact that we have an analytic solution (equation (2)) for the classical system
for x > 0, and also a closed form solution (equation (3)) for the quantum wavefunction, we
can compute the quantum geometric phases with extreme precision, as discussed below.
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4. Gauge-invariant geometric phase

We use the kinematic formulation (Mukunda and Simon 1993) to obtain the geometric phase
associated with the wavefunction given in equation (3):

�(t) = arg
∫ ∞

0
dx[ψ∗(x, 0)ψ(x, t) − Im

∫ t

0
ψ∗(x, t ′)∂t ′ψ(x, t ′) dt ′]. (4)

Here, the first and second terms represent, respectively, the total phase and the dynamical phase
accumulated by the wavefunction in time t. There exists a spectrum of phases characterized
by an odd integer n associated with the wavefunction (3), with χ = χn being the eigenstate of
the undriven impact oscillator. Simple algebraic manipulations show that the geometric phase
can be expressed in terms of the expectation value 〈x〉:

h̄�(t) = −
∫ t

0

[
ẋ2

c(t
′) − 〈x − xc〉ẍc(t

′)
]

dt ′ − G(t), (5)

where G(t) is given by

G(t) = (ẋc(t)xc(t) − ẋc(0)xc(0)) + arg

[ ∫ ∞

0
dx[(un(x

′(0))un(x
′(t))exp

ix

h̄
(ẋc(t) − ẋc(0))

]
.

(6)

It should be noted that G(t) depends on the initial and end points of the classical motion.
Further, it will vanish if we restrict the initial and end points of the motion to be at turning
points. In view of this, we will calculate the geometric phases at times where the classical
particle is at its turning points.

5. Spectrum of geometric phases

For a driven simple harmonic oscillator, 〈(x − xc)〉 vanishes, and therefore, from equation (5),
we see that (the modulus of) the geometric phase is equal to twice the kinetic energy of the
classical oscillator. This is in agreement with earlier studies (Song 1999). However, for the
impact oscillator, 〈(x − xc)〉 is non-vanishing and depends upon the quantum number n. We
write the geometric phase given in equation (5) as

h̄� = h̄φ0 + h̄φn, (7)

where h̄φ0 is the first term in equation (5) and denotes the n-independent contribution to the
phase. The second term, h̄φn, may depend on n. We will focus on φn, the term of quantum
mechanical origin. Note also that it is nonzero only for the nonlinear case.

Due to the polynomial character of the Hermite polynomials, the calculation of 〈(x −xc)〉
involves computing integrals of the form

Sm(xc) =
∫ ∞

0
(x − xc)

m−1 exp −1

2
(x − xc)

2 dx, (8)

where m is an integer. This integral can be evaluated explicitly and the result can be expressed
as a summation over parabolic cylinder functions, Dm(yc). Here, yc = αxc with α =

√
2ω0
h̄

.
It can be shown (Gradshteyn and Ryzhik 1965) that

Sm(yc) = 	(m)

m∑
j=1

(−yc)
m−j

	(m + 1 − j)
Dj (yc). (9)
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Therefore, 〈δy〉 ≡ 〈(y − yc)〉 can be written in terms of Sm, using the explicit expressions for
the Hermite polynomials:

〈δy〉n = 〈δy〉(2p−1) =
∑2p

j=2 IjS2j (yc)∑2p

j=2 IjS2j−1(yc)
. (10)

Here, the coefficients Ij are integers determined by the Hermite polynomials, and p =
1, 2, 3, . . . . For example, for the three lowest states, we obtain

〈δy〉1 = S4

S3
, (11)

〈δy〉3 = S8 − 6S6 + 9S4

S7 − 6S5 + 9S3
, (12)

and

〈δy〉5 = S12 − 20S10 + 130S8 − 300S6 + 225S4

S11 − 20S9 + 130S7 − 300S5 + 225S3
. (13)

In terms of the scaled variable y, the general expression is

φn(t) = 1

2ω0

∫ t

0
ÿc〈δy〉n dt ′, (14)

with n odd. Note that the dependence on h̄ has been absorbed in y = αx. The results shown
here are for a fixed α = 2. The variation with α did not lead to any changes in the behaviour
of the phases. Further, as h̄ → 0, asymptotic expansion of the parabolic cylinder function is
not well defined near x ≈ 0. We believe that, in analogy with the harmonic oscillator case,
the large n limit may describe the semiclassical limit of the system.

The variation of the geometric phase with time is computed by numerically integrating
equation (14). It is instructive to plot the geometric phase per unit time or average phase,
which we denote as 〈φn(t)〉 = φn(t)/t , as a function of time t. This is shown in figure 2. Our
detailed studies for various parameter values, extending over long time intervals, suggest that
as t becomes large, φn(t) varies linearly with time, with small fluctuations superimposed on
it. Thus, 〈φn(t)〉 approaches a constant as t → ∞. Here, we remark that times much longer
than those shown in figure 2 were also studied and showed the same behaviour. This appears
to be the case for periodic, quasiperiodic as well as chaotic dynamics. These results are
counterintuitive and this type of ‘convergence’ of 〈φn(t)〉 is particularly surprising for chaotic
dynamics. Furthermore, it is rather intriguing that this asymptotic behaviour of 〈φn〉 appears
to be insensitive to the underlying classical dynamics, in spite of the fact that the quantum
wavefunctions depend explicitly on the classical solution. Note, however, that the asymptotic
values of 〈φn〉 do depend on the type of classical dynamics.

It is natural to ask if the behaviour of 〈φn〉 can be studied analytically, as n → ∞. Using
the asymptotic expression for Hermite polynomials for odd-n (Spanier and Oldham 1987),
under certain approximations, we can show that as n → ∞, h̄〈φn〉 approaches the time-
averaged kinetic energy of the classical system, and is therefore independent of n. Further, we
have verified that for regular classical motion, our value of 〈φn〉 computed in this large n limit
is indeed consistent with the trend suggested by our numerical values for n = 1, 3, 5 given in
figure 2.

We show below, two different ways in which the quantum geometric phases exhibit
some fingerprints of the underlying classical dynamics. Firstly, we study the sensitivity of
these phases to initial conditions (figure 3). Secondly, we focus on the small fluctuations by
subtracting the linear time dependence from the geometric phases (figure 4).
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Figure 2. The top, middle and bottom figures show, respectively, the plots of 〈φn(t)〉 corresponding
to the periodic, quasiperiodic and chaotic orbits of the classical system displayed in figure 1. The
three curves in each of the figures describe the three quantum states with n = 1, 3, 5 (from bottom
to top). In every case, asymptotically in time, 〈φn(t)〉 approaches a constant with very small
fluctuations superimposed on it. (The time t is measured in units of 2π/ω.)

Figure 3 correlates the variation in the classical motion with the corresponding changes in
the asymptotic values of the quantum geometric phases 〈φn〉, as we vary the initial conditions
of the oscillator. In the parametric window corresponding to periodic dynamics, the phases
remain almost constant independent of the initial condition, in spite of the fact that the period
of the motion is changing. In the quasiperiodic regime, they vary smoothly with the initial
conditions. In the chaotic regime, they depend somewhat erratically on the initial energy.
Briefly, the transition from regular to irregular motion leaves its fingerprints on the spectrum
of geometric phases, although remaining somewhat insensitive to the details of the regular
motion.

Another way to illustrate the signature of classical motion on the quantum geometric phase
is as follows. As suggested by figure 2, asymptotically in time, 〈φn(t)〉 goes to a constant with
small fluctuations superimposed . Thus, we write

φn(t) = vnt + δφn(t), (15)

where vn becomes t independent. The δφn(t) are bounded oscillatory functions superimposed
on the steady growth.

Intriguingly, as shown in figure 4, the details of the classical dynamics, including the
period of the classical orbit, are present in δφn, the fluctuating component of the geometric
phase. For periodic dynamics, δφn are periodic with the period of the motion. Topological
quantum response to chaotic motion is reflected in δφn that exhibits chaotic dynamics.

The average phase becoming independent of n for large n, implies that vn is independent of
n for large n. Thus, equation (15) shows that as n → ∞, the difference in the phases between
two neighbouring states, denoted by dφn, is just equal to the difference in the small fluctuations
that were associated with the phases: dφn = (δφn − δφn+1) → (φn − φn+1). (Again, the trend
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Figure 3. The upper figure shows the classical bifurcation diagram, a plot of x at Poincare
points, as x0 (or the initial energy) is varied. Note that the dynamics to the left of the periodic
window is mostly stochastic while that to the right is mostly quasiperiodic. The period-6 in x near
x0 ≈ 1.0416 in fact corresponds to period-11 orbit in x − p as shown in figure 1. The lower
figure shows the corresponding quantum topological response to changes in the initial conditions,
measured in terms of asymptotic value of 〈φn〉, with n = 1, 3, 5.

Figure 4. The upper figure shows δφn with n = 1, 3, 5 for the period-11 trajectory of figure 1.
Note that δφn also has period-11. The lower figure shows the corresponding dφn with n = 1 (light
curve) and n = 3 (darker curve). The lowest curve (the curve with crosses) shows the classical
phase.



492 I I Satija and R Balakrishnan

for n = 1, 3, 5 results for the average phase for the periodic and quasiperiodic cases (figure 2)
is consistent with this large n result.)

The fact that the difference in the phases between two neighbouring quantum states retains
full information about the corresponding classical dynamics is reminiscent of Berry’s relation,
θ = −∂nφn, where θ is the classical geometric phase or the Hannay angle (Hannay 1985).
This relation was established for integrable systems in the semiclassical limit. There have
been some attempts to describe the classical limit of the Berry phase for chaotic systems where
the effort has been focused on finding a generalization of the 2-form within a Wigner–Weyl
formalism (Robbins and Berry 1992). However, the problem of finding the classical limit of
a quantum geometric phase for a chaotic system has remained open.

Our recent preliminary studies suggest that the quantum dφn may be related to a new type
of classical geometric phase, the one that can be associated with the nonplanar phase space
trajectories (Balakrishnan and Satija 2003, Satija and Balakrishnan 2004). The discussion of
this classical phase is beyond the scope of this paper. However, in figure 4 we compare this
classical phase with the difference in the fluctuations and find that they both have the same
order of magnitude. This type of correspondence between the classical phase and dφn is also
seen for quasiperiodic as well as for chaotic motions.

6. Summary and conclusions

There have been earlier studies of geometric phases for harmonic oscillators and their
generalizations (Song 1999, Seshadri 1999). The work described here is the first study of
quantum geometric phases in a driven nonlinear oscillator exhibiting chaotic dynamics. We
have shown that the geometric phase for this system increases linearly with time, with small
fluctuations superimposed, for large times irrespective of the underlying classical dynamics.
The nature of the corresponding classical motion is encoded in these fluctuations. The fact
that the details of the classical dynamics are mirrored in the difference between the geometric
phases of two neighbouring quantum states may be an important result, and its relation to
the Berry formula may provide an alternative view for finding the classical limit of quantum
phases.

In generalizing our conclusions, one must be cautious as the model under investigation
here is related to the harmonic oscillator and therefore certain details such as equation (3)
may not have any general validity. However, our key result that the difference in the quantum
phases bears fingerprints of classical dynamics may be true in other systems. The importance
of a topological description had emerged in an earlier study, in the context of a kicked Harper
model with a toroidal geometry, where the spectrum of topological numbers were correlated
with the regular to chaotic transition (Leboeuf et al 1990). Therefore, the study of topological
quantum response may provide a useful framework to address certain open issues in quantum
chaos.

In conclusion, Hamiltonians of the form H(x, t) = H0 + λx sin(ωt) are indeed relevant
in atom-optics experiments, where H0 is the time-independent Hamiltonian and the time-
dependent term describes the interaction with a single-mode radiation field in the dipole
approximation. Optical dipole traps which are close approximations to impact oscillators
can be realized in the laboratory, as atoms are repelled from the region where the laser
intensity is highest (Davis et al 1995). Considerable efforts are underway in using these
systems for quantum computation (Brennen et al 2003). The usefulness of Berry phase and
its generalization has been discussed in constructing fault-tolerant logic gates in nuclear
magnetic resonance experiments (Jones et al 2000). In addition, the relevance of generalized
geometric phases in quantum computing has been the subject of various investigations
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(Zanardi and Rasetti 1999, Du et al 2002). We hope that our results would stimulate further
experimental and theoretical studies of geometric phases.
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